Correction of patient positioning errors based on in-line cone beam CTs: clinical implementation and first experiences
نویسندگان
چکیده
BACKGROUND The purpose of the study was the clinical implementation of a kV cone beam CT (CBCT) for setup correction in radiotherapy. PATIENTS AND METHODS For evaluation of the setup correction workflow, six tumor patients (lung cancer, sacral chordoma, head-and-neck and paraspinal tumor, and two prostate cancer patients) were selected. All patients were treated with fractionated stereotactic radiotherapy, five of them with intensity modulated radiotherapy (IMRT). For patient fixation, a scotch cast body frame or a vacuum pillow, each in combination with a scotch cast head mask, were used. The imaging equipment, consisting of an x-ray tube and a flat panel imager (FPI), was attached to a Siemens linear accelerator according to the in-line approach, i.e. with the imaging beam mounted opposite to the treatment beam sharing the same isocenter. For dose delivery, the treatment beam has to traverse the FPI which is mounted in the accessory tray below the multi-leaf collimator. For each patient, a predefined number of imaging projections over a range of at least 200 degrees were acquired. The fast reconstruction of the 3D-CBCT dataset was done with an implementation of the Feldkamp-David-Kress (FDK) algorithm. For the registration of the treatment planning CT with the acquired CBCT, an automatic mutual information matcher and manual matching was used. RESULTS AND DISCUSSION Bony landmarks were easily detected and the table shifts for correction of setup deviations could be automatically calculated in all cases. The image quality was sufficient for a visual comparison of the desired target point with the isocenter visible on the CBCT. Soft tissue contrast was problematic for the prostate of an obese patient, but good in the lung tumor case. The detected maximum setup deviation was 3 mm for patients fixated with the body frame, and 6 mm for patients positioned in the vacuum pillow. Using an action level of 2 mm translational error, a target point correction was carried out in 4 cases. The additional workload of the described workflow compared to a normal treatment fraction led to an extra time of about 10-12 minutes, which can be further reduced by streamlining the different steps. CONCLUSION The cone beam CT attached to a LINAC allows the acquisition of a CT scan of the patient in treatment position directly before treatment. Its image quality is sufficient for determining target point correction vectors. With the presented workflow, a target point correction within a clinically reasonable time frame is possible. This increases the treatment precision, and potentially the complex patient fixation techniques will become dispensable.
منابع مشابه
Measurement of the immobilisation efficacy of a head fixation system
Background: In order to assign appropriate planning target volume (PTV) margins, each centre should measure the patient positioning deviations for their set-up techniques. At the Royal Marsden Hospital, UK, a conformal shell (cast) system is used when a stereotactic frame is not suitable. In this paper, we report on a series of measurements with the aim of obtaining the systematic and random ...
متن کاملMega Voltage Cone Beam Computed Tomography (MV- CBCT) using a Standard Medical Linear Accelerator and EPID: A feasibility study.
Introduction: The success of radiotherapy cancer treatment delivery depends on the accuracy of patient positioning for each treatment session. A number of kilovoltage x-ray volumetric imaging modalities with an additional source and detector have been developed to allow patient set-up verification based on the internal anatomy, but a significant portion of medical linacs are on...
متن کاملDosimetric Effects of Rotational Setup Error in Volumetric Modulated Arc Radiotherapy on Brain Tumor Patients
Introduction: This study examined the dosimetric effects based on the rotational setup error to correct patient setup errors occur during volumetric modulated arc radiotherapy (VMAT) for brain tumor patients. Material and Methods: This study included 1129 cases of cone beam computed tomography (CBCT) images obtained from 46 brain tumor patients, who experienced VMAT and used the 6DoF (degree o...
متن کاملUsability assessment of cone beam computed tomography with a full-fan mode bowtie filter compared to that with a half-fan mode bowtie filter
Background: In intensity modulated radiation therapy, cone beam computed tomography (CT) has been used to evaluate patients prior to treatment. This study conducted a comparative evaluation of the image reconstruction ability of the clinically used half-fan bowtie filter and the full-fan bowtie filter. Materals and Methods: A CT simulation marker was inserted inside a human phantom, and the pel...
متن کاملArtifact reduction techniques in Cone Beam Computed Tomography (CBCT) imaging modality
Introduction: Cone beam computed tomography (CBCT) was introduced and became more common based on its low cost, fast image procedure rate and low radiation dose compared to CT. This imaging modality improved diagnostic and treatment-planning procedures by providing three-dimensional information with greatly reduced level of radiation dose compared to 2D dental imaging modalitie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Radiation Oncology (London, England)
دوره 1 شماره
صفحات -
تاریخ انتشار 2006